
Operating System Support for
Application-Specific Speculation

Benjamin Wester

Peter Chen and Jason Flinn

University of Michigan

Speculative Execution

 Sequential dependent tasks

 Predict results of Task A
to break dependence

 Execute Task B in parallel
 Isolate all effects

 Correct prediction: commit

 Wrong prediction: abort

A
B

TI
M

E

2 EuroSys 2011

Predict A

Speculation Everywhere!

 Discrete event simulation

 I/O prefetching

 Distributed shared memory

 Distributed file systems

 Deadlock detection

 Remote displays

 Web page pre-rendering

EuroSys 2011 3

Speculation as a Service to Apps

How is this system designed?

In what ways can it be customized for an app?

How can those customizations be specified?

4 EuroSys 2011

Outline

 Introduction

 Designing Speculation as a Service

 Implementation

 Evaluation

 Conclusion

EuroSys 2011 5

Design 1: In-App Speculation

+ Complete semantic info

+ Predict arbitrary app
operations

+ Safe operations allowed

‒ No reuse: significant
development needed

‒ Scope is limited: unsafe
operations block

EuroSys 2011 6

App 1

Data

App 2

Data

OS

Design 2: Generic OS Speculation

+ Apps need no modifications

+ Wide scope: unsafe
operations taint

‒ Lacks semantic
understanding of app

‒ Predict system calls only

‒ Handle application
conservatively

EuroSys 2011 7

App 2 App 1

Separate Mechanism and Policy

Mechanism implements isolation

Policy describes customizations

Best of both extremes

 Mechanism built in OS

o Common implementation

o Wide scope

 Policy specified in Applications

o Expose semantic information

EuroSys 2011 8

OS

Design 3: Expose Predictions

+ Predict arbitrary app
operations

+ Reuse OS mechanism
(with app assistance)

+ Wide scope for taint
propagation

‒ Limited semantic info
‒ Speculative external output

never allowed

‒ Commit on identical results

EuroSys 2011 9

App 2 App 1

OS

Design 4: Expose Safety

+ Predict arbitrary app
operations

+ Reuse OS mechanism
(with app assistance)

+ Wide scope for taint
propagation

+ More semantic info
+ Allow safe output

+ Commit on equivalent results

EuroSys 2011 10

App 2 App 1

Customizable Policy

 Creation

o What tasks are predictable

o How to predict them

 Output

o What output is safe to allow

 Commit

oWhich results are acceptable to commit

EuroSys 2011 11

Outline

 Introduction

 Designing Speculation as an OS Service

 Implementation

 Evaluation

 Conclusion

EuroSys 2011 12

Implementation

 Mechanism built in OS

o Based on Speculator kernel

o Checkpoints & logs processes, files, IPC, etc.

 Policies expressed using system call API

EuroSys 2011 13

Speculative
Process

Control
Process

spec_fork()

EuroSys 2011 14

TI
M

E

spec_fork

 predict A

B

commit

A

commit/
abort

commit abort

API Example
int main() {

 int x;

 int prediction = get_prediction();

 if (spec_fork() == SPECULATIVE) {

 x = prediction;

 } else {

 x = slow_function();

 if (equiv(x, prediction))

 commit();

 else

 abort();

 }

 set_output_policy(stdout, ALLOW);

 printf(“%d”, x);

}

EuroSys 2011 15

Output Policy

Creation Policy

Commit Policy

Outline

 Introduction

 Designing Speculation as an OS Service

 Implementation

 Evaluation

 Conclusion

EuroSys 2011 16

Evaluation

Can apps effectively use API
to increase parallelism?

Case studies

1. Predictive application launching in Bash

2. SSL certificate checks in Firefox

3. Replicated service in PBFT-CS

EuroSys 2011 17

Check command

App 1: Predictive Launching in Bash

EuroSys 2011 18

TI
M

E

Run program …finished
bwester $ ▌

…finished
bwester $ grep foo –r .
▌

grep foo –r .

Creation Policy:
Use machine learning
to predict user input

Commit Policy:
Normalize user input
before comparison Output Policy:

Safe X11 Messages: Allow

How Much Work Can Be Hidden?

0

1

2

3

4

5

6

R
u

n
 T

im
e

 (
se

co
n

d
s)

EuroSys 2011 19

TI
M

E

Speculative Non-Speculative
45 Up to 86% hidden

Prompt

Get cmd

Spec.
Execute

cmd

Execute

Prompt

Execute
cmd

Get cmd

Done

Request page

App 2: Firefox SSL Connections

EuroSys 2011 20

TI
M

E

Web
Server

Validation
Server

Open https://

Check cert.

Validate

Get session key

GET /?id=0123

Creation Policy:
Predict certificate is valid

Output Policy:
Alow SSL connection

Output Policy:
Block private data

Connection Latency Hidden?

EuroSys 2011 21

TI
M

E

Non-Speculative Speculative

0

100

200

300

400

500

600

C
o

n
n

e
ct

 T
im

e
 (

m
ill

is
e

co
n

d
s)

Avg 60ms hidden
https://

Check cert.

Session key

Done

Request

https://

Check cert.

Session key

Done

Request Validate

App 3: PBFT-CS Protocol

EuroSys 2011 22

TI
M

E

Send Request Distributed
Replicated

Service
(Reply, sig1)

Check reply

Check reply

Request

(Reply, sig2)

Work…

Creation Policy:
Agree on 1st reply

Output Policy:
PBFT-CS Messages: Allow

Improved Client Throughput?

EuroSys 2011 23

TI
M

E

Non-Speculative Speculative

0

100

200

300

400

500

600

700

800

900

0 0.5 1 1.5 2

C
lie

n
t

O
p

s
p

e
r

Se
co

n
d

Latency between replicas
(milliseconds)

1.9x Throughput

Request1

1st Reply

Verify

Request2

1st Reply

Request1

1st Reply

Verify

Request2

1st Reply

Null requests

Cost of Generic Mechanism

EuroSys 2011 24

0

100

200

300

400

500

600

700

800

900

0 0.5 1 1.5 2

C
lie

n
t

O
p

s
p

e
r

Se
co

n
d

Latency between replicas
(milliseconds)

App-specific:
8% faster

App-specific Mech
Shared OS Mech
Non-speculative

Null requests

Conclusion

 Mechanism
o Common: checkpoints, output buffering, taint propagation
o Implemented in OS

 Policy
o App-specific: Controls creation, output, and commit
o Implemented in applications

 Demonstrated with 3 case studies
o Improved parallelism
o Small overhead relative to app-specific mechanism

Questions?

EuroSys 2011 25

