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Speculative Execution 

 Sequential dependent tasks 

 Predict results of Task A 
to break dependence 

 Execute Task B in parallel 
 Isolate all effects 

 Correct prediction: commit 

 Wrong prediction:   abort 
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Speculation Everywhere! 

 Discrete event simulation 

 I/O prefetching 

 Distributed shared memory 

 Distributed file systems 

 Deadlock detection 

 Remote displays 

 Web page pre-rendering 
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Speculation as a Service to Apps 

 

 

How is this system designed? 

In what ways can it be customized for an app? 

How can those customizations be specified? 
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Outline 

 Introduction 

 Designing Speculation as a Service 

 Implementation 

 Evaluation 

 Conclusion 
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Design 1:  In-App Speculation 

+ Complete semantic info 

+ Predict arbitrary app 
operations 

+ Safe operations allowed 

 

‒ No reuse: significant 
development needed 

‒ Scope is limited: unsafe 
operations block 

EuroSys 2011 6 

App 1 

Data 

App 2 

Data 



OS 

Design 2: Generic OS Speculation 

+ Apps need no modifications 

+ Wide scope: unsafe 
operations taint 

 

‒ Lacks semantic 
understanding of app 

‒ Predict system calls only 

‒ Handle application 
conservatively 
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Separate Mechanism and Policy 

Mechanism implements isolation 

Policy describes customizations 

Best of both extremes 

 Mechanism built in OS 

o Common implementation 

o Wide scope 

 Policy specified in Applications 

o Expose semantic information 
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OS 

Design 3: Expose Predictions 

+ Predict arbitrary app 
operations 

+ Reuse OS mechanism 
(with app assistance) 

+ Wide scope for taint 
propagation 

 

‒ Limited semantic info 
‒ Speculative external output 

never allowed 

‒ Commit on identical results 
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OS 

Design 4: Expose Safety 

+ Predict arbitrary app 
operations 

+ Reuse OS mechanism 
(with app assistance) 

+ Wide scope for taint 
propagation 

 

+ More semantic info 
+ Allow safe output 

+ Commit on equivalent results 

EuroSys 2011 10 

App 2 App 1 



Customizable Policy 

 Creation 

o What tasks are predictable 

o How to predict them 

 Output 

o What output is safe to allow 

 Commit 

oWhich results are acceptable to commit 
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Outline 

 Introduction 

 Designing Speculation as an OS Service 

 Implementation 

 Evaluation 

 Conclusion 
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Implementation 

 Mechanism built in OS 

o Based on Speculator kernel 

o Checkpoints & logs processes, files, IPC, etc. 

 

 Policies expressed using system call API 
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Speculative 
Process 

Control 
Process 

spec_fork() 
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spec_fork 

 predict A 

B 

commit 

A 

commit/ 
abort 

commit abort 



API Example 
int main() { 

 int x; 

 int prediction = get_prediction(); 

 if (spec_fork() == SPECULATIVE) { 

  x = prediction; 

 } else { 

  x = slow_function(); 

  if (equiv(x, prediction)) 

   commit(); 

  else 

   abort(); 

 } 

 set_output_policy(stdout, ALLOW); 

 printf(“%d”, x); 

} 
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Output Policy 

Creation Policy 

Commit Policy 



Outline 

 Introduction 

 Designing Speculation as an OS Service 

 Implementation 

 Evaluation 

 Conclusion 
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Evaluation 

Can apps effectively use API 
to increase parallelism? 

 

Case studies 

1. Predictive application launching in Bash 

2. SSL certificate checks in Firefox 

3. Replicated service in PBFT-CS 

 

EuroSys 2011 17 



Check command 

App 1: Predictive Launching in Bash 
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Run program  …finished 
bwester $ ▌ 

…finished 
bwester $ grep foo –r . 
▌ 

grep foo –r . 

Creation Policy: 
Use machine learning 
to predict user input 

Commit Policy: 
Normalize user input 
before comparison Output Policy: 

Safe X11 Messages: Allow 



How Much Work Can Be Hidden? 
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Speculative Non-Speculative 
45 Up to 86% hidden 

Prompt  

Get cmd 

Spec. 
Execute 

cmd 

Execute 

Prompt  

Execute 
cmd 

Get cmd 



Done 

Request page 

App 2: Firefox SSL Connections 
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Web 
Server 

Validation 
Server 

Open https:// 

Check cert. 

Validate 

Get session key 

GET /?id=0123 

Creation Policy: 
Predict certificate is valid 

Output Policy: 
Alow SSL connection 

Output Policy: 
Block private data 



Connection Latency Hidden? 
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Avg 60ms hidden 
https:// 

Check cert. 

Session key 

Done 

Request 

https:// 

Check cert. 

Session key 

Done 

Request Validate 



App 3: PBFT-CS Protocol 
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Send Request Distributed 
Replicated 

Service 
(Reply, sig1) 

Check reply 

Check reply 

Request 

(Reply, sig2) 

Work… 

Creation Policy: 
Agree on 1st reply 

Output Policy: 
PBFT-CS Messages: Allow 



Improved Client Throughput? 
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Latency between replicas 
(milliseconds) 

1.9x Throughput 

Request1 

1st Reply 

Verify 

Request2 

1st Reply 

Request1 

1st Reply 

Verify 

Request2 

1st Reply 

Null requests 



Cost of Generic Mechanism 
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Latency between replicas 
(milliseconds) 

App-specific: 
8% faster 

App-specific Mech 
Shared OS Mech 
Non-speculative 

Null requests 



Conclusion 

 Mechanism 
o Common: checkpoints, output buffering, taint propagation 
o Implemented in OS 

 Policy 
o App-specific:  Controls creation, output, and commit 
o Implemented in applications 

 Demonstrated with 3 case studies 
o Improved parallelism 
o Small overhead relative to app-specific mechanism 

 

Questions? 

EuroSys 2011 25 


