
EnsemBlue: Integrating Distributed Storage and Consumer Electronics

Daniel Peek and Jason Flinn
Department of Electrical Engineering and Computer Science

University of Michigan

Abstract
EnsemBlue is a distributed file system for personal mul-
timedia that incorporates both general-purpose comput-
ers and consumer electronic devices (CEDs). Ensem-
Blue leverages the capabilities of a few general-purpose
computers to make CEDs first class clients of the file
system. It supports namespace diversity by translating
between its distributed namespace and the local names-
paces of CEDs. It supports extensibility through persis-
tent queries, a robust event notification mechanism that
leverages the underlying cache consistency protocols of
the file system. Finally, it allows mobile clients to self-
organize and share data through device ensembles. Our
results show that these features impose little overhead,
yet they enable the integration of emerging platforms
such as digital cameras, MP3 players, and DVRs.

1 Introduction

Consumer electronic devices (CEDs) are increasingly
important computing platforms. CEDs differ from
general-purpose computers in both their degree of spe-
cialization and the narrowness of their interfaces. As
predicted by Weiser [27], these computers “disappear
into the background” because they present a specialized
interface that is limited to the particular application for
which they are designed. Nevertheless, CEDs are often
formidable computing platforms that possess substantial
storage, processing, and networking capabilities.

In this paper, we explore how CEDs can be integrated
into a distributed file system. Our focus on storage is mo-
tivated by the difficulty of managing personal multime-
dia such as photos, video, and music. Current approaches
to organizing data (e.g., manual synchronization) do not
scale well as the number of computers and CEDs owned
by a single user increases. For instance, when files are
manually associated with specific devices, users must in-
tervene to decide which items are replicated on which
device. Users must also manage consistency of repli-
cated data when files are updated. To guard against data
loss, users must place copies of data in reliable, well-
maintained storage locations.

Since distributed file systems have successfully auto-
mated these time-consuming and error-prone tasks in
workstation environments [3, 7], we posit that they can
perform a similar function for the home user. To ex-
plore our hypothesis, we have created EnsemBlue, a dis-
tributed file system that is designed to store personal mul-
timedia. EnsemBlue, which is based on the Blue File
System [14], adds several new capabilities to support
consumer electronic devices:

• persistent queries. The heterogeneity of CEDs cre-
ates the need to customize file system behavior. For
instance, many CEDs are associated with files of only
one type; e.g., a digital camera with JPEGs. The net-
work, storage, and processing resources of different
CEDs vary widely since each is equipped with only
the resources required to perform its particular func-
tion. Rather than treat each device equally, Ensem-
Blue provides persistent queries that customize its be-
havior for each client. A persistent query delivers
event notifications to applications that specialize file
system behavior. Notifications can be delivered to ap-
plications running on any EnsemBlue client; they are
robust in the presence of failures and network discon-
nection. Persistent queries have low overhead because
they reuse the existing cache consistency protocols of
the file system to deliver notifications. They serve
as the foundation on which to build custom automa-
tion such as type-specific caching, transcoding, and
application-specific indexing.

• namespace diversity. Many CEDs have custom or-
ganizations for the data they store (e.g., an iPod stores
music files in several different subdirectories in its
local file system). The organization of data on a
CED is application-specific; it is not necessarily the
way the user most naturally thinks about the data.
Since no single namespace can suffice for all CEDs
and general-purpose computers, EnsemBlue supports
namespace diversity. It creates a distributed names-
pace for a user’s personal data that is shared among
general-purpose computers — the user can organize
this namespace in any fashion. It supports CEDs with



custom file organizations by automatically translating
between the distributed namespace and each device-
specific namespace. Changes made in the EnsemBlue
namespace trigger equivalent changes in CED names-
paces. Modifications made within a CED names-
pace are automatically propagated to the EnsemBlue
namespace and shared with other clients.

• ensemble support. A mobile user may carry sev-
eral CEDs; e.g., a cell phone, an MP3 player, and a
portable DVD player. Device ensembles (sometimes
called personal area networks) let multiple mobile
computers and CEDs owned by the same user self-
organize and share data [21]. For instance, an MP3
player might play not just music stored on its local
hard drive, but also music stored on a co-located cell
phone or laptop. EnsemBlue allows its mobile clients
to form ensembles and directly access data from other
clients. It presents a consistent view of data within
each ensemble by propagating changes made on one
device to replicas on other ensemble members.

Our results show that the overhead of these new capa-
bilities is minimal. We present case studies in which we
use these capabilities to integrate a digital camera and
an iPod with EnsemBlue. We demonstrate that the ex-
tensibility of EnsemBlue enables a high degree of au-
tomation, including the ability to automatically organize
photos and music, index text and multimedia data, and
transcode content to support different media players.

2 Background

When we began this work, our ambition was to develop a
distributed file system to store personal multimedia. We
focused on multimedia because of the explosion of com-
puting and consumer electronics devices that consume
that type of data. Anecdotally, we found that many of
our acquaintances owned several devices and that man-
aging personal multimedia was increasingly a chore.

We adapted BlueFS [14], a distributed file system devel-
oped by our research group, to accomplish this task. Our
choice of BlueFS was driven by several factors. BlueFS
allows clients to operate disconnected, a critical ability
for devices such as MP3 players and laptops that of-
ten operate without a network connection. BlueFS is
also designed to conserve the battery lifetime of mobile
clients. BlueFS has first class support for portable stor-
age, which we felt would be useful for devices such as
iPods and cameras. Finally, BlueFS lets clients dynami-
cally add and remove storage devices — this seemed to
mesh well with users who occasionally synchronize their
CEDs with a general-purpose computer.

Over the past five months, our research group has used
BlueFS to store personal multimedia. Our initial experi-

ence has been encouraging in several respects. We have
found the common namespace of a distributed file sys-
tem to be a useful way to organize data. One member of
the group uses BlueFS to play music on a home PC, a
laptop, a work computer, a TiVo DVR in his living room,
and a D-Link wireless media player. After adding a new
song to his BlueFS volume on any computer, he can play
it from any of these locations. We have used support for
disconnected operation to display content on long plane
flights. The abilities of BlueFS to cache files on local
disk and reintegrate modifications asynchronously have
also proven useful. The group BlueFS file server is lo-
cated at the University of Michigan, while the majority
of clients are in home locations connected via broadband
links. Disk caching reduces the frequency of skips when
listening to music at home because it avoids a potentially
unreliable broadband link. Further, when storing large
video files that have been recorded at home, the ability
to reintegrate modifications asynchronously has helped
hide network constraints.

Unfortunately, our initial experience storing personal
multimedia in BlueFS also revealed several problems.
Most troubling was our inability to use BlueFS with
many of our favorite CEDs such as cameras and MP3
players. Because these devices are closed platforms, they
could not run the BlueFS client code. These devices
required specific file organizations that did not match
the way we had organized our files in the distributed
namespace. The CEDs with which we had the most suc-
cess were ones such as the TiVo DVR that use third-
party software to interface with the local file system of
a home computer. If the home computer exports the
BlueFS namespace, such CEDs can indirectly read from
and write to BlueFS files.

We found that the mechanisms for managing caching
in BlueFS were insufficiently expressive. These mech-
anisms let us control caching according to the location
of files within the hierarchical directory structure. How-
ever, we often wanted richer semantics. For instance, we
wanted to cache all files of a certain type on particular de-
vices (e.g., all MP3s on a laptop). Since large files were
particularly time-consuming to transfer between home
and work over a broadband connection, we wanted to
specify policies where large files would be cached in both
locations. Unfortunately, limited caching semantics con-
strained how we organized files. For example, to control
the caching of JPEG photos, we put all files of that type
in a single file system subtree.

We wished that BlueFS were more extensible. Since
several of our media players supported a limited set of
formats, we found it necessary to transcode files. As
transcoding is CPU intensive, we used workstations for
this task, which required us to log in to these machines



remotely. Instead of performing this task manually each
time new media files were added to the file system, we
would have preferred to extend the file system to do
transcoding automatically.

Finally, we were sometimes frustrated by the need to
propagate updates between clients through the file server.
When both a producer and consumer of data were located
at home, the broadband link connecting the home com-
puters with the file server was a communication bottle-
neck. For instance, it would take many hours to propa-
gate a video recorded on a DVR to a laptop because data
had to traverse the bottleneck link twice. While we ap-
preciated the file server as a safe repository for our data
that was regularly backed up, we also wanted the ability
to ship data between clients directly. We also believed
that as we came to use more mobile devices, it would be
useful to exchange data directly between them when they
were disconnected from the server.

To address these problems, we have created a new file
system, called EnsemBlue, that is based on the original
BlueFS code base. EnsemBlue provides three novel ca-
pabilities, which we will describe in Sections 4–6: per-
sistent queries to support customization of file system be-
havior, explicit support for closed-platform CEDs which
require particular file system organizations, and ensem-
ble support that allows multiple clients to exchange data
without communicating with the file server.

3 Target environment

Individual EnsemBlue deployments are targeted at meet-
ing the storage needs of a single user or a small group
of users such as a family. A well-maintained file server
might reside at home or with an ISP; its clients could in-
clude desktops, laptops, MP3 players, cell phones, and
digital cameras. As many clients are mobile, EnsemBlue
supports disconnected operation for isolated devices and
allows collections of disconnected devices to form en-
sembles. Read-only sharing of content among different
servers is enabled through a loosely-coupled federation
mechanism.

Since EnsemBlue targets multimedia data, we expect that
most files stored in the system will be large, and that
reads will dominate writes. Updates, when they occur,
will typically be small changes to file metadata such as
song ratings and photo captions. EnsemBlue’s consis-
tency model is designed for a read-mostly workload. It
uses a callback-based cache coherence strategy in which
a client sets a callback with the server when it reads an
object. The callback is a promise by the server to notify
the client when the object is modified. Similar to Coda’s
weakly connected mode of operation, updates are propa-
gated asynchronously to the file server. As in any system

that uses optimistic concurrency, conflicts can occur if
two updates are made concurrently; if this occurs, En-
semBlue supports Coda-style conflict resolution.

4 Persistent queries

Persistent queries are a robust event notification mech-
anism that lets users customize the file system with ap-
plications that automate common tasks. With persistent
queries, one can tune EnsemBlue’s replication strategy
to meet the needs of different CEDs. Persistent queries
also let applications index or transcode files created by
other computers and CEDs, even if those clients were
disconnected from the network when files were added.

4.1 Design considerations

The first design issue we considered was how tightly
to integrate custom functionality with EnsemBlue. We
initially considered a tight integration that would allow
custom code to be directly injected into the file sys-
tem. However, we felt this approach would require care-
ful sandboxing to address reliability, security, and pri-
vacy concerns. Therefore, we opted for a simpler, more
loosely-coupled approach. We observed that, for local
file systems, custom functionality is often implemented
by standalone applications like the Glimpse indexer [13]
or the lame transcoder [11]. However, existing dis-
tributed file systems do not provide a way for applica-
tions to learn about events that happen on other clients.
Our approach, therefore, was to broaden the interface of
EnsemBlue to better support standalone applications that
extend file system behavior.

The functionality most sorely lacking was a robust event
notification mechanism that supports multiple clients,
some of which are mobile. Although current operating
systems can notify applications about local file system
changes [24], their notification mechanisms do not scale
to distributed environments. For instance, a transcoder
running on a laptop should be notified when JPEG files
are added by other file system clients. The laptop may
frequently disconnect from the network, complicating
the delivery of notifications. Further, if JPEG files are
added by a digital camera, the laptop and camera may
rarely be connected to the network at the same time.

Potentially, we could have implemented a separate event
notification framework. However, distributed file sys-
tems already provide notifications when files are modi-
fied in order to maintain cache consistency on multiple
clients. Thus, by expressing event notifications as modi-
fications to objects within the distributed file system, we
can reuse the existing cache coherency mechanism of the
distributed file system to deliver those notifications.



pq create (IN String query, IN Long event mask, OUT Id fileid); Creates a query and returns its unique identifier
pq delete (IN Id fileid); Deletes the specified query
pq open (IN Id fileid, OUT Int file descriptor); Opens an existing query
pq close (IN Int file descriptor); Closes the specified query
pq wait (IN Int file descriptor, IN Timeval tv); Blocks until a record is available to read
pq next (IN Int file descriptor, OUT event record); Returns the next record in the query log (if any)
pq truncate (IN Int file descriptor, IN Int record number); Deletes records up to the specified record

Figure 1. Persistent query interface

A persistent query is a new type of file system object that
is used to deliver event notifications. An application cre-
ates a persistent query to express the set of events that
it is interested in receiving. The file server appends log
records to the query when an event matching the query
occurs. An application extending file system behavior
reads the records from the query object, processes them,
then removes them from the object. Since the persis-
tent query is an object within the file system, the existing
cache consistency mechanisms of EnsemBlue automat-
ically propagate updates made by the server or applica-
tion to the other party. EnsemBlue inherits the callback-
based cache consistency of BlueFS [14], which ensures
that updates made by a disconnected client are propa-
gated to the server when the client reconnects. Similarly,
invalidations queued by the server while the client was
disconnected are delivered when it reconnects.

For example, an application that transcodes M4A mu-
sic to the MP3 format creates a persistent query so that
it is informed when new M4A files are added. It opens
the query and selects on the file descriptor to block un-
til new events arrive. The EnsemBlue client sets a call-
back with the file server for the query (if one does not
already exist) when the query is opened. If another client
adds a new M4A file, the EnsemBlue server appends an
event record to the query, which causes an invalidation to
be sent to the client running the transcoder. That client
refetches the query and unblocks the transcoder. After
reading the event record, the transcoder creates the cor-
responding MP3 file.

We next considered the semantics for event notification.
Given our decision to implement custom functionality
in standalone applications, semantics that deliver each
event exactly once did not seem appropriate. Events
could be lost if an application or operating system crash
occurs after a notification is delivered but before the
event is processed. While we could potentially perform
event notification and processing as an atomic transac-
tion, this would necessitate a much tighter coupling of
the file system and applications than we want.

Instead, we observed that customizations can usually be
structured as idempotent operations. For instance, an in-
dexing application can insert a newly created file into
its index only if and only if it is not already present.
Therefore, EnsemBlue provides at least once semantics

for event notification. A customization application first
receives a notification, then processes it, and finally re-
moves the event from the query. If a crash occurs be-
fore the application processes the event, the notification
is preserved since the query is a persistent object. If a
crash occurs after the application processes the event but
before it removes it from the query, it will reread the
same notification on restart. Since its event processing
is idempotent, the result is the same as if it had received
only one notification.

4.2 Implementation

Figure 1 shows the interface for persistent queries. Ap-
plications running on any EnsemBlue client can create
a new query by calling pq create and specifying both
a query string expressed over file metadata and an event
mask that specifies the set of file system events on which
the query string should be evaluated. Currently, the query
string can be expressed over a subset of metadata fields
(e.g., file name, owner, etc.). The event mask contains
a bit for each modification type; e.g., it has bits for file
creation and deletion.

Like directories, queries are a separate type of file sys-
tem object that have a restricted application interface. A
query contains both header information (the query string
and event mask) and a log of events that match the query.
Each record contains the event type as well as the 96 bit
EnsemBlue unique identifier for the matching file.

The server keeps a list of outstanding queries. When
it processes a modification, it checks all queries for the
modification type to see if the state of any modified ob-
ject matches any query string. If a match occurs, the
server appends an event record to the query. The server
guarantees that the appending of any event record is
atomic with the modification by committing both updates
to disk in the same transaction. Since queries are persis-
tent, if an update is made to the file system, matching
event notifications are eventually delivered.

An event mask also contains an initial bit that applica-
tions set to evaluate a query over the current state of the
file system. If this bit is set, the server adds a record to
the query for each existing file that matches the query
string. If an application sets both the initial and file cre-
ation bits, the server guarantees that the application is no-



tified about all files that match the query string, including
those created concurrently with the creation of the query.

Several implementation choices improve response time
when evaluating persistent queries. First, queries are
evaluated at the server, which typically has better com-
putational resources than CEDs and other clients. Eval-
uating queries at the server also benefits from moving
computation close to the data since the server stores the
primary replica of every object. In contrast, evaluating
queries at a client would require the client to fetch data
from the server for each uncached object. Second, the
server maintains an in-memory index of file metadata
that it uses to answer queries over existing file system
state. Use of an index means that the server does not need
to scan all objects that it stores to answer each query. Fi-
nally, after the query is initially created, all further eval-
uation is incremental. Because the server makes each
new record persistent atomically with the operation that
caused the record to be written, query records are not lost
due to crash or power failure. This eliminates the need to
rescan the entire file system on recovery.

A drawback of making queries persistent is that queries
that are no longer useful may accumulate over time. We
plan to address this with a tool that periodically examines
the outstanding queries and deletes ones that have not
been used for a substantial period of time. Another po-
tential drawback is that updating persistent queries cre-
ates additional serialization delays due to lock acquisi-
tion; however, since locks are held only briefly, the seri-
alization costs in the server are usually negligible when
compared with disk I/O costs. Since a query update is
committed in the same disk transaction as the file oper-
ation that caused the update, the query update does not
require extra disk seeks.

4.3 Examples

We have built four examples of customized functional-
ity that use persistent queries. The first is a multime-
dia transcoder that converts M4A music to the MP3 for-
mat. When the transcoder first runs, it creates a query
that matches existing files that have a name ending in
“.m4a”, as well as update and creation events for files of
that name. As with many current multimedia programs,
applications built on persistent queries typically infer a
file’s type from its name. All such applications share
an implicit assumption that common naming conventions
are employed while creating files.

When the transcoder is notified of a new M4A file, it
invokes the Linux faad and lame tools to convert be-
tween the two formats. It stores the resulting MP3 in
the same directory as the original M4A file. Since per-
sistent queries deliver notifications to any EnsemBlue

client, we run the transcoder on a PC with ample com-
putational resources. If an M4A file were to be added by
a disconnected CED such as a cell phone, the notification
reaches the transcoder once the phone reconnects to the
file server. This transcoder is only 108 lines of code.

We also use persistent queries to support type-specific
affinity. A command line tool lets users specify caching
behavior for any storage device as a query string. The
tool sets the initial bit in the event mask, as well as the
bits for events that create new files, delete files, or mod-
ify them. When an event for an existing or newly created
file is added to the query, the file is fetched and cached
on the storage device. For example, using type-specific
affinity, one can cache all music files on an MP3 player to
allow them to be played while disconnected, or one can
cache large files on a home PC to avoid communication
delays associated with a broadband link.

The last two examples of persistent queries perform type-
specific indexing. Applications such as iTunes, Spot-
light, and Glimpse are examples of popular tools that
index data stored on a local file system. However, be-
cause these tools rely on event notification mechanisms
that are confined to a single computer, they do not scale
well to distributed file systems. We augmented two exist-
ing tools, Glimpse and GnuPod, to use persistent queries.
The Glimpse indexer creates a query that matches all
events (creation, deletion, update, etc.) for files that con-
tain textual data. The music indexer matches the same
events for MP3 and other music files. The first time these
tools execute, they index the files currently in a user’s
EnsemBlue namespace. Afterward, they incrementally
update their databases when they are notified of the ad-
dition or deletion of matching files. The indexers run on
powerful machines with spare cycles to reduce latency,
yet their results are accessible from any client because
they are stored in EnsemBlue. We used 139 lines of code
to add persistent query support to Glimpse and 86 lines
of code for GnuPod.

5 Integrating consumer electronic devices

5.1 Leveraging general-purpose computers

At first glance, it appears that closed-platform CEDs can-
not participate in a distributed file system because they
lack the extensibility to execute custom file system code.
For instance, most DVRs and MP3 players require sub-
stantial hacking to modify them to run arbitrary executa-
bles. Even CEDs that are extensible at the user level may
not allow kernel modifications.

EnsemBlue circumvents this problem by leveraging the
capabilities of general-purpose computers. A closed-
platform CED can participate in EnsemBlue by attach-
ing to any general-purpose client of its file server. The



EnsemBlue daemon, Wolverine, running on the general-
purpose client acts on behalf of the CED for all Ensem-
Blue activities. If the user modifies data in the local
CED namespace, Wolverine detects these changes and
makes corresponding updates to the distributed Ensem-
Blue namespace. Similarly, when data is modified in
the EnsemBlue namespace, Wolverine propagates rele-
vant modifications to the CED.

The requirements for a closed-platform CED to partic-
ipate in EnsemBlue are minimal. The CED must sup-
port communication with a general-purpose computer;
e.g., via a wireless interface or USB cable. The CED
must provide a method to list the files it stores, as well as
methods to read and update each file. Currently, Ensem-
Blue supports CEDs that provide a file system interface
such as FAT and cameras that support the Picture Trans-
fer Protocol.

5.2 Making CEDs self-describing

In contrast to current models that require CEDs to syn-
chronize with particular computers, EnsemBlue allows
CEDs to attach to any general-purpose client, even if that
client is currently disconnected from the file server. In
order to provide this flexibility, EnsemBlue makes CEDs
self-describing. Each CED locally stores metadata files
that contain all the information needed for an EnsemBlue
client to attach and interact with that CED. For each file
system object on the CED that is replicated in the Ensem-
Blue namespace, EnsemBlue stores a receipt on the CED
that describes how the state of the object on the CED
relates to the state of a corresponding object in the En-
semBlue namespace. EnsemBlue also stores device-level
metadata on the CED that uniquely identify the CED and
describe its policies for propagating updates between its
local namespace and the EnsemBlue namespace. Since
these metadata files are small, Wolverine improves per-
formance by reading them and caching them in memory
when a CED attaches.

5.3 Supporting namespace diversity

EnsemBlue supports namespace diversity. It maintains
a common distributed namespace that the user can or-
ganize — this namespace is exported by all general-
purpose clients. On a CED that mandates a custom or-
ganization, EnsemBlue stores data in a local namespace
that matches the mandated organization.

EnsemBlue views files stored on a CED as replicas of
files in its distributed namespace. Each receipt maintains
a one-to-one correspondence between the file in the CED
namespace and the file in the distributed namespace. It
stores the fully-qualified pathname of the file in the local
namespace and its unique EnsemBlue identifier.

A receipt can be viewed as a type of symbolic link since it
relates two logically equivalent files. We considered us-
ing symbolic links directly. However, if such links were
to reside in EnsemBlue, a disconnected client would be
unable to interpret the files on a CED if it did not have
all relevant links cached when the CED attached. The al-
ternative of using symbolic links in the CED’s local file
system is unattractive because many CED file systems do
not support links. Receipts avoid both pitfalls since they
are file system independent and reside on the CED.
Each receipt also contains version information. For the
local namespace, the receipt stores a modification time.
For the EnsemBlue namespace, the receipt stores the ver-
sion vector described in Section 6. When a CED attaches
to a general-purpose client, Wolverine detects modifica-
tions by comparing the versions in the receipt with the
current version of the file in both namespaces. The next
two subsections describe how it propagates updates be-
tween namespaces when versions differ.

5.4 Reintegrating changes from CEDs

On a general-purpose EnsemBlue client, a kernel mod-
ule intercepts file modifications and redirects them to
Wolverine. However, most CEDs do not allow the in-
sertion of kernel modules, making this method infeasi-
ble. Thus, for a closed-platform CED, Wolverine uses
a strategy similar to the one used by file synchronization
tools such as rsync [26] and Unison [17] in which it scans
the local file system of the CED to detect modifications.
Wolverine scans a CED when it is first attached and sub-
sequently at an optional device-specific interval.

When a CED attaches to a general-purpose client,
Wolverine lists all files on the CED using the interface
exported by that device. For instance, for CEDs that ex-
port a file system interface, Wolverine does a depth-first
scan from the file system root. Usually, this scan is quick:
on an iPod mini with 540 MP3s comprising 3.4 GB of
storage, the scan takes less than 2 seconds. If a file on the
CED has a modification time later than the time stored in
its receipt, the file has been modified since the last time
the CED detached from an EnsemBlue client. Wolverine
copies the file from the CED to the EnsemBlue names-
pace and updates its receipt.
If a file or directory is found on the CED for which no
receipt exists, Wolverine creates a corresponding object
in the EnsemBlue namespace. It first retrieves the re-
ceipt of the object’s parent directory on the CED. From
the receipt, it determines the EnsemBlue directory that
corresponds to the parent directory. It replicates the new
object in that EnsemBlue directory.

To bootstrap this process, a user associates the CED with
an EnsemBlue directory the first time the CED is at-
tached. Wolverine replicates the local file system of the



CED as a subtree rooted at the specified directory. The
user can then reorganize the data by moving files and
directories from that subtree to other parts of the En-
semBlue namespace. Moving objects within EnsemBlue
does not affect the organization of files on the CED.

For example, a cell phone user might download MP3s
from a content provider and take pictures with a built-
in camera. If the phone is associated with the di-
rectory /ensemblue/phone and the phone has sepa-
rate music and photos subdirectories, EnsemBlue cre-
ates two directories /ensemblue/phone/photos and
/ensemblue/phone/music that contain the new con-
tent. The user may change this behavior by moving the
directories within EnsemBlue; e.g., to subtrees that store
other types of music and photos. Not only will the files
currently in these directories be moved to the new loca-
tion, but future content created by the cell phone will be
placed into the directories at their new locations.

The user can exert fine-grained control over the place-
ment of data in EnsemBlue by relocating individual files.
For instance, the user might move MP3s into a directory
structure organized by artist and album. Since moving
each file manually would be quite tedious, one can use
persistent queries to automate this process. For instance,
a music organizer could create a query to learn about new
files that appear in the /ensemblue/phone/music di-
rectory. For each file, it would read the artist and album
from the ID3 tag, then move the file to the appropriate
directory (creating the directory if needed). In this ex-
ample, the combined automation of namespace diversity
and persistent queries lets the user exert substantial con-
trol over the organization of data with little effort.

If a file is deleted from a CED, Wolverine detects that
a receipt exists without a corresponding local file. De-
pending on the policy specified for the device, Wolverine
may either delete both the receipt and its corresponding
file in the EnsemBlue namespace, or it may delete only
the receipt. We have found the latter policy appropriate
for CEDs such as DVRs and cameras on which files are
often deleted due to storage constraints.

5.5 Propagating updates to CEDs

Modifications made to files in EnsemBlue are automat-
ically propagated to corresponding files in local CED
namespaces. When Wolverine creates a receipt for an
object stored on a CED, it also sets a callback with the
server for that file on behalf of the CED. If the file is sub-
sequently modified by another client, the server sends an
invalidation to the client to which the CED is currently
attached (this client may be different from the one that
set the callback). Upon receiving a callback, Wolverine
fetches the new version of the file and updates the replica

and its receipt on the CED. If the CED is not attached to
a client when a file is modified, the server queues the
invalidation and delivers it when the CED next attaches.

EnsemBlue uses affinity to determine whether the local
namespace of a CED should be updated when a new file
is created. The user may specify that a subtree of the
EnsemBlue namespace has affinity with a directory in the
local CED namespace. At that time, Wolverine replicates
the subtree in the specified directory on the CED. When
setting affinity, the user may optionally specify that files
created in the future in the EnsemBlue subtree should
also be replicated on the CED.

CEDs support type-specific affinity. A command line
tool lets the user create a persistent query as a hidden
file in any directory on the CED. The EnsemBlue server
initially appends event records for all existing files that
match the specified query. When a file matching the
query is created, the server appends an additional record.
Since a callback is set on behalf of the CED for the new
query, the client to which the CED is attached receives
an invalidation when the server inserts new records in
the query. Wolverine fetches the file referenced by each
record and creates a corresponding file in the CED di-
rectory. In this manner, the CED directory is populated
with all files that match the query. This use of type-
specific affinity is inspired by the Semantic File Sys-
tem [5]. However, in contrast to SFS where directories
populated by semantic queries are virtual, EnsemBlue
replicates data on the CED so that the results of a query
are available when the CED is disconnected.

6 Ensemble support

EnsemBlue supports ensembles, which are collections
of devices that share a common view of the file system
over a local network. Ensembles allow clients discon-
nected from the file server to share their cache contents
and propagate updates to each other. For instance, a mo-
bile user who lacks Internet access may carry a laptop, a
cell phone, and an MP3 player. EnsemBlue lets these de-
vices share a mutually consistent view of the distributed
namespace. Data modifications made on one client will
be seen on the others. Only clients that share a common
server can form an ensemble (such devices would typ-
ically be owned by the same user or family). A client
joins only one ensemble at a time.

6.1 Design considerations

In designing support for ensembles, we wished to reach a
middle ground between file systems such as BlueFS [14]
and Coda [10] that support disconnected operation but
do not let two disconnected clients communicate, and
systems such as Bayou [25] that eliminate the file server



and propagate data only through peer-to-peer exchanges.
There is an important role for a central repository of data
in personal file systems. A system that stores personal
multimedia is entrusted with data such as family photos
that have immense personal significance. Storing the pri-
mary replica of such files at the server ensures that one
copy is always in a reliable location. The server is also
a highly-available location from which any client may
obtain a copy of the file. Yet, the peer-to-peer model is
appealing in the ensemble environment. As the number
of personal computing devices increases, a mobile user
will often have two or more co-located devices that are
disconnected from the server. Devices that cache content
of interest to others should be able to share their data.

One important difference between ensembles and peer-
to-peer propagation is the length of interaction. Bayou
devices communicate through occasional synchroniza-
tion: two clients come into contact, exchange updates,
and depart. Ensembles, in contrast, allow long-lived in-
teractions among disconnected devices. A client that
joins an ensemble first reconciles the state of its cache
with the view of the file system shared by the ensemble.
It participates in the ensemble until it either loses contact
with the other devices or reconnects with the server.

One general-purpose computer, called the castellan, acts
as a pseudo-server for the ensemble. The castellan main-
tains a replica list that tracks the cache contents of each
member. When a member suffers a cache miss, it con-
tacts the castellan, which fetches the file from another
member, if possible. Clients also propagate updates to
the castellan when they modify files — the castellan in
turn propagates the modifications to interested clients
within the ensemble. For example, a PDA might be used
to display photos taken with a cell phone. The cell phone
updates a shared directory when it takes a new photo,
causing the castellan to invalidate the replica of the direc-
tory cached on the PDA. Subsequently, the PDA would
contact the castellan to fetch the modified directory and
new photo from the phone.

Ensembles are designed to support specialized CEDs that
cache only a small portion of the objects in the file sys-
tem. Devices such as MP3 players and cell phones are in-
capable of storing a complete copy of all objects in a data
volume, as is done in systems such as Bayou, or keep-
ing a log of updates to all objects, as is done in systems
such as Footloose [15] and Segank [22]. For instance,
a single video exceeds the storage capacity of a typical
cell phone. EnsemBlue lets a client cache only the ob-
jects with which it has affinity. Thus, a CED need not
waste storage, CPU cycles, or battery energy processing
updates for files it will never access.

We struggled to balance the concerns of consistency and
availability. When a client is disconnected from the

server, its cached version of a file may be stale since it
cannot receive invalidations. Other clients within the en-
semble would see the stale version if they read the file,
assuming that no other member cached a more recent
version. In the worst case, a client may have previously
seen an up-to-date version of the file, evicted that version
from its cache, then joined the ensemble while discon-
nected. The client would see an older version of the file
than it previously viewed under this scenario.

We initially devised many solutions to improve consis-
tency in ensembles. For example, we considered having
each client remember the versions of all objects that it
ever read. We also considered having each client store
complete version information for all objects in the file
system. However, we felt that these solutions did not fit
well with a storage system that focuses on personal mul-
timedia. The types of file updates that we envision a user
making while disconnected are often trivial; e.g., chang-
ing the rating on a song, or adding a tag to a photo. We
therefore asked ourselves: is it better to present data that
might possibly be stale or to present no data at all? In our
target environment, we believe the former answer is cor-
rect (although in a workstation environment, we would
give a different answer).

6.2 Implementation

An ensemble is formed when two or more disconnected
clients share a local area network. For wireless devices,
we leverage PAN-on-Demand [1], which lets devices
owned by the same user discover each other and form
a personal area network. Since PAN-on-Demand targets
devices carried by a single user, it assumes that its mem-
bers can communicate via a single radio hop. To form an
ensemble, at least one client must be a general-purpose
computer. This device serves as the castellan; the other
devices are its clients. CEDs can join an ensemble by
attaching to a general-purpose ensemble member.

6.2.1 Tracking modifications

EnsemBlue tracks modifications for each object using a
version vector [16] that contains a <client, version>

tuple for each client that modified the object. A modify-
ing client increments the version in its tuple. If it has not
yet modified the object, it appends a tuple with its unique
EnsemBlue client identifier and a version of one.

Version vectors are used to compare the recency of repli-
cas. If two version vectors are the same, the replicas are
equivalent. For non-equivalent replicas, we say that a
replica is more recent than another if for every client in
the version vector of the second replica, the client exists
in the version vector of the first replica with an equal or
greater version number. If two replicas are not equiva-
lent and neither is more recent than the other, concurrent



updates have been made by different clients. In this case,
EnsemBlue asks the user to manually resolve the con-
flict. However, if concurrent updates have been made to
a directory and EnsemBlue can automatically merge the
updates, it will do so without user involvement; e.g., it
will merge updates that create two different files in the
same directory. This strategy is the same as Coda’s strat-
egy for reintegrating changes from disconnected clients.

While a client is connected to the server, its locally
cached replicas are the same as the primary replicas
stored on the server. Once a client disconnects, it ap-
pends operations that modify its cached objects to a dis-
connection log. When the client reconnects with the
server, it replays the disconnection log to reintegrate
changes. Each disconnection log entry contains a modi-
fication (write, file creation, rmdir, etc.), the version vec-
tors of all objects modified, and the unique identifier of
the client that made the modification.

Each client maintains the invariant that for each cached
object, the disconnection log contains all operations
needed to recreate the cached version of the object start-
ing with a version already seen by the server. A client
that never joins an ensemble maintains this invariant triv-
ially since it appends an entry to the disconnection log
every time it modifies an object. When it disconnected,
all cached objects were versions seen by the server. By
replaying the log, the server can reconcile each primary
replica with the modified version on the client.

6.2.2 Joining an ensemble

A disconnected client joins an ensemble when it discov-
ers another disconnected client or an existing ensemble
on its local network. The joining computer becomes a
client of the castellan of the existing ensemble. If the
discovered device is an isolated disconnected client, then
the discovered device becomes the castellan and the dis-
coverer becomes its client. While the current method
of choosing the castellan is arbitrary, selecting a less-
capable device as the castellan, e.g., a PDA instead of
a laptop, impacts only performance, not the correctness
of the system. In the future, we plan to add heuristics
that select the most capable client to be the castellan.

Before a disconnected client joins an ensemble, it must
reconcile its view of the EnsemBlue namespace with that
of the ensemble. After reconciliation, if an object is
replicated on more than one ensemble client, all replicas
are the same, most up-to-date version.

The joining client sends the castellan the version vectors
of its cached objects. The castellan stores the version
vectors of all objects cached on any ensemble member
in the replica list. By comparing the two sets of version
vectors, it first determines the set of objects that are repli-
cated on both the ensemble and the joining client. It then

determines the subset of these objects for which the en-
semble version and the version on the joining client differ
— this is the set of objects to be reconciled.

If an object being reconciled is in conflict due to concur-
rent updates on disconnected clients, the user must re-
solve the conflict before the new device joins the ensem-
ble. Otherwise, EnsemBlue brings the less recent replica
up-to-date. If the disconnection log on the client with the
more recent replica contains sufficient records to update
the less recent replica, the log records are transmitted to
the out-of-date client. The client applies the logged op-
erations and adds the records to its disconnection log. If
the ensemble version is out-of-date, the castellan applies
the log records to its local cache if necessary, then for-
wards the records to other members that cache the object.
We anticipate that transmitting and applying log records
will usually be more efficient than transmitting the entire
object. Most multimedia files are large, yet updates are
often trivial; e.g., setting the fields in an ID3 tag.

Sometimes, log records alone are insufficient to bring the
less recent replica up-to-date. This occurs when the less
recent replica is older than the version associated with
any record in the disconnection log of the client with the
most recent replica. In this case, EnsemBlue simply in-
validates the stale replica. Any client that has affinity to
the invalidated object fetches the most recent version and
its associated log records after the ensemble forms.

Reconciliation ends when all out-of-date replicas on the
joining client and the existing ensemble clients have been
updated or invalidated. The castellan updates the replica
list to include objects cached by the joining client.

6.2.3 Ensemble operation

After joining an ensemble, a client can fetch data from
other ensemble members via the castellan. EnsemBlue
inherits the dynamic cache hierarchy of BlueFS [14]. It
fetches data from the location predicted to have the best
performance and use the least energy. A client that de-
cides to fetch data from the ensemble sends an RPC to
the castellan. The castellan examines the replica list to
determine which client, if any, caches the data. It either
services the request itself or forwards it to another client.
If the data is not cached within the ensemble, the castel-
lan returns an error code.

If the requesting client does not have an up-to-date ver-
sion of the object, the responding client includes all
records in its disconnection log that pertain to the object
— this maintains the invariant described in Section 6.2.1.
The requesting client appends the records to its discon-
nection log and caches the object in its local storage. The
castellan updates its replica list to note that the object is
now cached by the requesting client.



Any ensemble client that modifies an object sends an
RPC to the castellan. The castellan forwards the mod-
ification to all ensemble members that cache the object.
These clients update their cached objects and append a
record to their disconnection logs. Thus, most clients are
only informed of updates that are relevant to them. The
castellan does not send clients updates and requests for
objects they do not cache. For instance, an MP3 player
that caches only music files will not be informed about
updates to photos or asked to service requests for e-mail.

6.2.4 Leaving an ensemble

When the castellan loses contact with a client, the client
is considered to have left the ensemble. The castellan re-
moves the objects cached by that client from the replica
list. If the castellan departs, the ensemble is disbanded.
The remaining clients form a new ensemble if they re-
main in communication.

A client that leaves an ensemble operates disconnected
until it joins another ensemble or reconnects with the
server. Its disconnection log may now contain updates
made by other clients. Upon reconnection, the client
sends its log to the server. Since the first entry in the
log for any object modifies a version previously seen by
the server, the server can use the log to update the pri-
mary replicas. However, since multiple clients can rein-
tegrate the same log record, the server must not apply
the same record twice. It uses the version vectors in the
log records to eliminate duplicates. If the version that
it caches is more recent than the log record, it ignores
the modification. Otherwise, it applies the modification
to the primary replicas. If a primary replica is more re-
cent than the replica on the reconnecting client, the server
sends the client an invalidation.

This design lets mobile clients reconcile changes on be-
half of other clients. Thus, a client can remain up-to-date
even though it never reconnects with the server. For ex-
ample, a car stereo could retrieve MP3s from a discon-
nected client such as a laptop that is transported in the
car. The stereo could also reintegrate changes to play
lists and song ratings back to the server via the laptop.

7 Evaluation

Our evaluation answers the following questions:

• What is the overhead of forming an ensemble?
• What is the overhead of persistent queries?
• How effectively can CEDs such as cameras and MP3

players be integrated with EnsemBlue?

7.1 Ensemble formation

We measured the time two disconnected clients take to
form an ensemble. During this experiment, an IBM X40

1 10 100 1000 10000

Number of Files

0.01

0.10

1.00

R
ev

al
id

at
io

n 
T

im
e 

(s
ec

on
ds

)

This figure shows how the time to form an ensemble varies with
the number of files stored on each device. The graph is log-log.
Each result is the mean of 7 trials — the error bars are 90%
confidence intervals.

Figure 2. Ensemble formation time

laptop with a 1.2 GHz Pentium M processor and 768 MB
of RAM becomes the castellan, and an IBM T20 lap-
top with a 700 MHz Pentium 3 processor and 128 MB of
RAM becomes its client. The computers communicate
via an 802.11b wireless ad-hoc connection.

Figure 2 shows how the time to form the ensemble
changes as we vary the number of files cached on both
clients. This data is displayed using a log-log graph due
to the disparity in reconciliation time. At the beginning
of each experiment, both laptops cache the same ver-
sion of each file. Since only metadata is exchanged in
this experiment, file size is unimportant and all files are
zero length. In the absence of out-of-date replicas, the
time to form an ensemble is quite small. Beyond an ap-
proximately 20 ms constant performance cost for the ini-
tial message exchange, formation time is roughly propor-
tional to the number of cached items. Even with 10,000
files cached on both machines, the ensemble forms in less
than three seconds.

We next measured the effect of reconciling out-of-date
objects on ensemble formation time. At the beginning of
this experiment, the X40 client contains 18 MP3 files that
total 115 MB in size, as well as 40 photos comprising a
total of 110 MB of data. The T20 contains only the 18
MP3 files. It does not have affinity for the photos and
does not cache them.

We consider the four scenarios in Figure 3. In the first
scenario, none of the files are modified. As predicted
by the previous experiment, the ensemble is formed in
a fraction of a second. In the second scenario, the X40
modifies the ID3 tag of all MP3s prior to joining the en-
semble. The ensemble is formed in slightly less than a
second. The additional delay reflects the time for the X40
to transmit its disconnection log records that correspond
to the ID3 tag modifications.



Scenario Formation time (seconds)
None 0.34 (0.32–0.36)

ID3 Tags 0.95 (0.91–0.96)

Music 226 (219–233)

All 227 (221–234)

This figure shows how the number of updates reconciled affects
ensemble formation time. In the first row, no files are updated.
In the second row, ID3 tags on 18 MP3s are updated. In the
third row, the 18 MP3s are re-encoded, and in the last row, the
18 MP3s and 40 photos are completely modified. Each result
is the mean of 5 trials — minimum and maximum values are in
parentheses.

Figure 3. Time to reconcile updates in an ensemble

In the third scenario, the X40 overwrites the contents of
all MP3s before joining the ensemble — this corresponds
to a user re-encoding the MP3s from a CD. It takes 227
seconds to form the ensemble since each large file on
the T20 is completely overwritten. For comparison, the
time to manually copy the files is 209 seconds. Thus,
the overhead due to EnsemBlue is only 8%. The differ-
ence between the second and third scenarios illustrates
the benefit of shipping log records rather than entire ob-
jects during reconciliation. When modifications are a
small portion of the total size of each file, EnsemBlue
realizes a substantial performance improvement over a
manual copy of the files.

In the final scenario, the X40 overwrites both the MP3
files and the photos in its cache. However, the time
to form the ensemble is virtually identical to the third
scenario. Since the T20 does not cache photos, it does
not have to be informed about the additional updates;
the X40 ships only log records that pertain to the MP3
files. From these results, we conclude that EnsemBlue
can achieve substantial performance benefit by limiting
reconciliation to the set of objects cached on both clients.
In contrast, a file system that transfers all updates would
nearly double the reconciliation time.

7.2 Persistent query overhead

We next measured the overhead of persistent queries,
which is exhibited in two ways. First, evaluating a
large number of queries might slow the server as it pro-
cesses modifications. Second, the evaluation of individ-
ual queries might exhibit a high latency that would pre-
clude them from being used by interactive applications.

For these experiments, the EnsemBlue server was a Dell
Precision 370 desktop with a 3 GHz Pentium 4 proces-
sor and 2 GB of RAM. The client was the X40 laptop
from the previous experiments. The two computers are
connected via 100 Mb/s Ethernet.

To evaluate the first source of overhead, we ran an I/O in-
tensive benchmark in which we untar the Apache 2.0.48

No Queries 1000 Queries
0

50

100

150

200

T
im

e 
(s

ec
on

ds
)

Remove
Make
Configure
Untar

This figure compares the time to run the Apache build bench-
mark with no queries outstanding and 1,000 queries outstand-
ing. Each result is the mean of 5 trials — the error bars are 90%
confidence intervals.

Figure 4. Overhead of persistent queries

source tree into EnsemBlue, run configure in an object
directory within EnsemBlue, run make in the object di-
rectory, and finally remove all files. Figure 4 compares
the time to perform the benchmark when the server is
evaluating 1000 outstanding queries with the time to per-
form the benchmark when no queries are outstanding.
The results are identical within experimental error, indi-
cating that persistent query evaluation is not a substantial
source of overhead.

To evaluate the second source of overhead, we measured
the time to create a query while varying the number of
records returned. Before running each experiment, we
populated EnsemBlue with the data from the personal
volume of a user of the prototype described in Section 2.
This data set contains 5,276 files and is over 7 GB in size.
We created persistent queries with the initial bit set in the
event mask and with the query string matching the vari-
ous file types shown in Figure 5.

We measured the time for an application to create each
query and read all matching records. The results show
a fixed cost of approximately 126 ms. While the latency
increases with the number of matching records, the in-
cremental cost is small. If all 5,276 files match the query
string, the experiment takes 62 ms longer.

From these results, we conclude that persistent queries
impose minimal overhead during both creation and eval-
uation. We are encouraged that these results indicate that
persistent queries are cheap enough to be employed by a
wide variety of applications.



File type Matches Creation time (seconds)
None 0 0.126 (0.125–0.126)

TiVo 2 0.126 (0.125–0.126)

text 45 0.128 (0.126–0.133)

jpeg 132 0.127 (0.126–0.128)

postscript 712 0.135 (0.116–0.146)

MP3 1729 0.150 (0.147–0.160)

All 5276 0.188 (0.161–0.198)

This figure shows the time to create a persistent query matching
varied numbers of files. Each result is the mean of 8 trials — the
values in parentheses are the minimum and maximum trials.

Figure 5. Time to create a persistent query

7.3 Case study: Integrating a digital camera

In the next two sections, we present case studies in which
we examine how well CEDs can be integrated with En-
semBlue. In the first, we take pictures using a Canon
PowerShot S40 digital camera. The camera produces
JPEG photos that it stores in a FAT file system. We regis-
tered the camera with EnsemBlue by specifying a root di-
rectory to which photos should be imported. The camera
groups the photos it takes into subdirectories that contain
100 photos each. The default behavior of EnsemBlue is
to recreate the camera directory structure within the root
directory specified during registration. This is not the
most user-friendly of organizations.

We first decided to organize our photos by date. The
camera stores metadata in each JPEG that specifies when
it took the photo. We created a photo organizer applica-
tion that creates a persistent query to be notified when a
new photo is added to EnsemBlue. The organizer reads
the JPEG metadata and moves the file to a subdirectory
specific to that date, creating the directory if necessary.
After moving each JPEG file, the organizer removes the
notification from the query.

We next enhanced our organizer to arrange photos by ap-
pointment. The organizer takes as a parameter the lo-
cation of an ical .calendar file. When a new JPEG
is added, it searches the file for any appointment en-
tered for the time the photo was taken. If it finds such
an appointment, it moves the photo to a subdirectory for
that appointment within the directory for the date when
the photo was taken (again, creating the subdirectory as
needed). The photo organizer required only 123 lines
of code, indicating that such applications can be created
with minimal effort by CED manufacturers, third-party
software developers, and technically-savvy users.

We measured the time to import photos from our camera
into EnsemBlue using the same experimental setup as in
the previous section. The camera, containing 201 new
photos approximately 256 MB in size, is attached to the

X40 laptop client. EnsemBlue takes approximately 188
seconds to import the photos. In contrast, copying all
the files manually takes 174 seconds. The approximately
7% overhead imposed by EnsemBlue seems a reasonable
price to pay for automatic replication and organization of
the imported photos, especially when one considers the
time required to manually organize 201 images.

7.4 Case study: Integrating an MP3 player

Our second case study integrates an iPod mini MP3
player and a D-Link media player with EnsemBlue. The
iPod is a mobile device that stores and plays music files
of several different formats. It presents two challenges
for integration with a distributed file system. First, music
files are stored in specific subdirectories of its local file
system — the music files should be spread between these
subdirectories to improve lookup latency. Second, the
iPod uses a custom database to store information about
the music files in its local storage. This database must be
updated when files are added.

We address the first challenge with type-specific affinity.
To place files in specific subdirectories on the iPod, we
create a query for each directory that matches music files
stored within EnsemBlue. To divide files between subdi-
rectories, we take the simple approach of partitioning the
namespace by filename. For example, the query for the
first subdirectory matches on music files that begin with
‘a’. When a new music file beginning with ‘a’ is added
to EnsemBlue, the server inserts a record in the query for
that directory. When the iPod next attaches to a client,
that client fetches the query, reads the record, and repli-
cates the file on the iPod within that subdirectory.

We address the second challenge by creating a stan-
dalone application to update the iPod database. This
application creates a query that matches all music files.
When a file is added, the application updates the iPod
database within the EnsemBlue namespace using Gnu-
Pod. The database on the iPod’s local storage has affinity
to this file. Thus, when the iPod attaches to a client, that
client receives a callback on behalf of the iPod for the
database file. It fetches the database and replicates it on
the iPod. This application required only 86 lines of code.

We also added support for a D-Link media player that
can only play music files encoded in the MP3 format.
Since many of our music files are encoded in the M4A
format, we wrote a transcoder, described in Section 4.3,
to convert files so that they could be played on the media
player. The D-Link media player can read files using a
client program that exports the file system of a general-
purpose computer. Thus, we simply run that program on
an EnsemBlue client; the media player can play music
in EnsemBlue without further customization. One of our



group members uses an identical strategy to play music
files stored in EnsemBlue on a TiVo DVR.

8 Related work

To the best of our knowledge, EnsemBlue is the first
distributed file system to provide explicit support for
consumer electronics devices. Its novel contributions
include persistent queries, which leverage the underly-
ing cache consistency mechanisms of the file system to
deliver application-specific event notifications, and re-
ceipts, which allow namespace diversity.

Many operating systems provide application notifica-
tions about changes to local file systems; Linux’s ino-
tify [12], the Windows Change Journal [4], and Apple’s
Spotlight [24] are three examples. Watchdogs [2], pro-
posed by Bershad and Pinkerton, combine notification
with customization by allowing user-level applications to
safely overload file system operations for particular files
and directories. Unlike persistent queries, these mecha-
nisms are limited to a single computer and do not scale to
the distributed environment targeted by EnsemBlue. Our
approach of evaluating persistent queries on the server
realizes the same benefit of pushing evaluation to the data
that has been previously shown in projects such as Ac-
tive Disks [19] and Diamond [8]. Salmon et al. [20] have
recently proposed views that allow pervasive devices to
publish interest in particular sets of objects with peer de-
vices. Views are similar to persistent queries in that they
allow clients to specify the objects in which they are in-
terested as a semantic query. Since views target a server-
less system, each view must be propagated to all peers.

Type-specific affinity is similar to the virtual directories
presented by the Semantic File System [5]. However,
the directory contents produced by type-specific affinity
are persistent, meaning that they can be accessed by a
mobile computer or CED that is disconnected from the
file server. Persistent queries should not be confused with
applications such as Glimpse [13] and Connections [23]
that index file system data. Rather, persistent queries are
a tool that such applications can use; they notify indexing
applications about changes to file system state.

EnsemBlue’s strategy of scanning the local file system
of closed-platform CEDs is similar to the way that file
synchronizers operate [17, 26]. The main difference be-
tween the two strategies lies in EnsemBlue’s use of re-
ceipts. Receipts are a more general mapping between
namespaces that allow files to be moved within the dis-
tributed namespace, yet retain the same location in the lo-
cal device namespace. As shown in Section 7.3, receipts
can be combined with persistent queries to automate the
remapping of individual files between namespaces.

EnsemBlue’s model of supporting isolated disconnected
clients owes much to Coda [10]. From Coda, EnsemBlue
inherits the use of a disconnection log to store updates,
as well as its conflict resolution strategy. However, En-
semBlue differs from prior distributed file systems in its
explicit support for ensembles of disconnected clients.
While others have identified ensembles as an emerging
paradigm for personal mobile computing [21], Ensem-
Blue is the first server-based distributed file system to
explicitly support this model of computing.

Many previous storage systems have eschewed a central
server in favor of propagating data through peer-to-peer
exchanges. Bayou [25] replicates data collections in their
entirety. A Bayou client can read and write any acces-
sible replica. Replicas are reconciled by applying per-
write conflict resolution based on client-provided merge
procedures. EnsemBlue differs from Bayou in that it
allows its clients to cache only a portion of a data vol-
ume. Further, ensembles remain consistent after forma-
tion, whereas Bayou replicas can diverge after each rec-
onciliation.

Footloose [15] and EnsemBlue both present a consis-
tent view of objects on devices located close to the user.
Like Bayou, Footloose allows clients to exchange data
through propagation of update records. Wishes in Foot-
loose provide an analogous event notification mechanism
to persistent queries. However, unlike persistent queries,
wishes do not guarantee at-least-once delivery. Foot-
loose requires that update records be preserved until ev-
ery interested client is known to have received the record;
this could be a problem for CEDs with limited storage. In
contrast, EnsemBlue clients can discard update records
once they have been reconciled with its server. Footloose
targets CEDs as clients, but requires that any client be
sufficiently open to run their Java code base. Footloose
does not export a file system interface, and thus cannot
be used with legacy applications.

Other systems that support peer-to-peer update propaga-
tion are Segank [22], in which a MOAD carried by a user
at all times ensures consistency among computers that
share a namespace, Ficus [6], Files Every Where [18],
and OmniStore [9].

9 Conclusion

Consumer electronics devices are increasingly important
computing platforms. Yet, it remains challenging to in-
tegrate them into existing distributed systems. CED ar-
chitectures are typically closed, admitting only a narrow
interface for interaction with the outside world. Their ca-
pabilities are non-uniform since available resources are
chosen to support a particular application. This hetero-
geneity implies that a distributed system that supports



CEDs should be flexible. It must customize its inter-
actions with each device according to the interface pre-
sented. If a CED lacks the necessary resources to par-
ticipate in a distributed protocol, the protocol should al-
low for other, more general-purpose participants to sup-
ply needed resources on its behalf.

EnsemBlue shows the benefit of flexibility. By support-
ing namespace diversity, device ensembles, and persis-
tent queries, EnsemBlue is highly extensible. As the
case studies in this paper demonstrate, extensibility is
crucial to making devices such as MP3 players, cam-
eras, and media players full-fledged participants in En-
semBlue. Based on these results, we are hopeful that
similar principles can be applied to other distributed sys-
tems to allow them to support CEDs.

Acknowledgments

We thank Bill Schilit and Nitya Narasimhan for fruitful discussions
about this topic, and Edmund B. Nightingale for his help with BlueFS.
Kumar Puspesh added PTP support to EnsemBlue. Manish Anand, Ya-
Yunn Su, and Kaushik Veeraraghavan, and the anonymous reviewers
provided valuable feedback. The work is supported by the National
Science Foundation under award CNS-0306251. Jason Flinn is sup-
ported by NSF CAREER award CNS-0346686. Intel Corp and Mo-
torola Corp have provided additional support. The views and conclu-
sions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed
or implied, of NSF, Intel, Motorola, the University of Michigan, or the
U.S. government.

References
[1] ANAND, M., AND FLINN, J. PAN-on-Demand: Building

self-organizing WPANs for better power management. Tech.
Rep. CSE-TR-524-06, Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI,
2006.

[2] BERSHAD, B. B., AND PINKERTON, C. B. Watchdogs - extend-
ing the unix file system. Computer Systems 1, 2 (Spring 1988).

[3] CALLAGHAN, B., PAWLOWSKI, B., AND STAUBACH, P. NFS
Version 3 Protocol Specification. Tech. Rep. RFC 1813, IETF,
June 1995.

[4] COOPERSTEIN, J., AND RICHTER, J. Keeping an eye on your
NTFS drives: the Windows 2000 Change Journal explained. Mi-
crosft Systems Journal (September 1999).

[5] GIFFORD, D. K., JOUVELOT, P., SHELDON, M. A., AND
O’TOOLE, J. W. Semantic file systems. In Proceedings of the
13th ACM Symposium on Operating Systems Principles (October
1991), pp. 16–25.

[6] GUY, R. G., HEIDEMANN, J. S., MAK, W., PAGE, T. W.,
POPEK, G. J., AND ROTHMEIER, D. Implementation of the Fi-
cus replicated file system. In Proceedings of the Summer USENIX
Conference (June 1990), pp. 63–71.

[7] HOWARD, J. H., KAZAR, M. L., MENEES, S. G., NICHOLS,
D. A., SATYANARAYANAN, M., SIDEBOTHAM, R. N., AND
WEST, M. J. Scale and performance in a distributed file system.
ACM Transactions on Computer Systems 6, 1 (February 1988).

[8] HUSTON, L., SUKTHANKAR, R., WICKREMESINGHE, R.,
SATYANARYANAN, M., GANGER, G. R., RIEDEL, E., AND
AILAMAKI, A. Diamond: A storage architecture for early dis-
card in interactive search. In Proceedings of the USENIX FAST
’04 Conference on File and Storage Technologies (March 2004).

[9] KARYPIDIS, A., AND LALIS, S. Omnistore: A system for
ubiquitous personal storage management. In Proceedings of the
4th IEEE International Conference on Pervasive Computing And
Communications (Pisa, Italy, March 2006), pp. 136–147.

[10] KISTLER, J. J., AND SATYANARAYANAN, M. Disconnected op-
eration in the Coda file system. ACM Transactions on Computer
Systems 10, 1 (February 1992).

[11] http://lame.sourceforge.net/.
[12] LOVE, R. Kernel korner: Intro to inotify. Linux Journal 2005,

139 (2005), 8.
[13] MANBER, U., AND WU, S. GLIMPSE: A tool to search through

entire file systems. In Proceedings of the 1994 Winter USENIX
Conference (San Francisco, CA, January 1994), pp. 23–32.

[14] NIGHTINGALE, E. B., AND FLINN, J. Energy-efficiency and
storage flexibility in the Blue File System. In Proceedings of the
6th Symposium on Operating Systems Design and Implementa-
tion (San Francisco, CA, December 2004), pp. 363–378.

[15] PALUSKA, J. M., SAFF, D., YEH, T., AND CHEN, K. Footloose:
A case for physical eventual consistency and selective conflict
resolution. In Proceedings of the 5th IEEE Workshop on Mobile
Computing Systems and Applications (Monterey, CA, Oct. 2003).

[16] PARKER, D. S., POPEK, G. J., RUDISIN, G., STOUGHTON, A.,
WALKER, B. J., WALTON, E., CHOW, J. M., EDWARDS, D.,
KISER, S., AND KLINE, C. Detection of mutual inconsistencies
in distributed systems. IEEE Transactions on Software Engineer-
ing SE-9, 3 (May 1983), 240–247.

[17] PIERCE, B. C., AND VOUILLON, J. What’s in Unison? A formal
specification and reference implementation of a file synchronizer.
Tech. Rep. Technical Report MS-CIS-03-36, Dept. of Computer
and Information Science, University of Pennsylvania, 2004.

[18] PREGUICA, N., BAQUERO, C., MARTINS, J. L., SHAPIRO, M.,
ALMEIDA, P. S., DOMINGOS, H., FONTE, V., AND DUARTE,
S. Few: File management for portable devices. In Proceedings
of the International Workshop on Software Support for Portable
Storage (San Francisco, CA, March 2005), pp. 29–35.

[19] RIEDEL, E., FALOUTSOS, C., GIBSON, G. A., AND NAGLE,
D. Active disks for large-scale data processing. IEEE Computer
(June 2001), 68–74.

[20] SALMON, B., SCHLOSSER, S. W., AND GANGER, G. R. To-
wards efficient semantic object storage for the home. Tech. Rep.
CMU-PDL-06-103, Carnegie Mellon University, May 2006.

[21] SCHILIT, B. N., AND SENGUPTA, U. Device ensembles. Com-
puter 37, 12 (December 2004), 56–64.

[22] SOBTI, S., GARG, N., ZHENG, F., LAI, J., SHAO, Y., ZHANG,
C., ZISKIND, E., KRISHNAMURTHY, A., AND WANG, R. Y.
Segank: A distributed mobile storage system. In Proceedings of
the 3rd Annual USENIX Conference on File and Storage Tech-
nologies (San Francisco, CA, March/April 2004).

[23] SOULES, C. A. N., AND GANGER, G. R. Connections: using
context to enhance file search. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles (Brighton, United
Kingdom, October 2005), pp. 119–132.

[24] Spotlight overview. Tech. Rep. 2006-04-04, Apple Corp., Cuper-
tino, CA, 2006.

[25] TERRY, D. B., THEIMER, M. M., PETERSEN, K., DEMERS,
A. J., SPREITZER, M. J., AND HAUSER, C. H. Managing up-
date conflicts in Bayou, a weakly connected replicated storage
system. In Proceedings of the 15th ACM Symposium on Operat-
ing Systems Principles (Copper Mountain, CO, 1995), pp. 172–
182.

[26] TRIDGELL, A., AND MACKERRAS, P. The rsync algorithm.
Tech. Rep. TR-CS-96-05, Department of Computer Science, The
Australian National University, Canberra, Australia, 1996.

[27] WEISER, M. The computer for the 21st century. ACM SIGMO-
BILE Mobile Computing and Communications Review 3, 3 (July
1999), 3–11.


